

WORKSHOP 5

Enhancing Global Resilience to Disasters and Climate Change

Organiser: Ministry of the Interior and Safety (MOIS)

SESSION 3

Science & Technology Innovation for Responding to Landslides and Urban Floods

Organiser: Ministry of the Interior and Safety (MOIS)

Innovations in Science and Technology for Landslide Response

Hwang Youngcheol

Sangji University

Innovations in Science and Technology for Landslide Response

1. Occurrence of Landslides and Climate Change

Trend of Increasing Scale of Landslide Damage due to Climate Change

Recent Landslide Damage

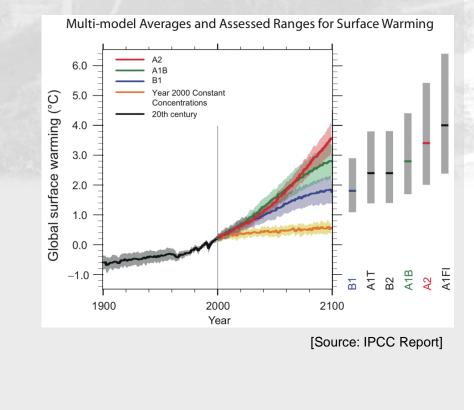
- Landslide damage area increased 8 times over the past 5 years
- Mainly occurs in July (21.1%) and August (60.2%)
- Gradual increase in landslide damage due to climate change

Average Number of Rainfall Events Exceeding 50mm per Hour

- (2000s) $14 \rightarrow$ (2010s) $16 \rightarrow$ (2023) 25 events
- 2023: Cumulative rainfall during the rainy season increased by over 85% compared to normal years
- 2022: Record heavy rainfall in central regions from August 8 to 11
- 2020: Record damage due to localized heavy rainfall and typhoons

									(단위: ha, %)			
구 분	합 계	비 율	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
계	2,586	100	70	0	54	94	56	156	1,343	27	327	459
5월	1	0.1										1
6월	33	1.2	-	-	-	-	2	-	4	-	4	23
7월	545	21.1	-	-	-	94	-	1	33	13	2	402
8월	1,557	60.2	-	-	1	-	31	-	1,194	12	286	33
9월	222	8.6	70	-	-	-	2	1	112	2	35	-
10월	228	8.8	-	-	53	-	21	154	-	-	-	-

[Source: Korea Forest Service, Landslide Prevention Department]



1. Occurrence of Landslides and Climate Change

Climate Exchange

Change in Extreme Rainfall Rates According to Carbon Emission Scenarios (Present~2100)

[National Water Resources Management Comprehensive Information System]

2. Landslide Prediction Technology

Changes in Landslide Prediction Technology

Physical-Based Model

- Collecting of information (terrain, forest, geotechnical, weather data, etc.)
- Evaluation through analysis of information using physical models

Statistical Model

- Collection and analysis of landslide occurrence data (terrain, geolog y, etc.)
- Evaluation through statistical analysis of correlations between data

Examples from the USA, Japan, Taiwan, Italy, etc.

- Statistical analysis of landslide history and rainfall data
- Empirical or probabilistic evaluation \rightarrow Early warning of landslides
- I-D(Intensity-Duration) curves based on empirical relationships

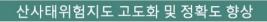
Advances in computer and internet technologies

Changes in Physical-Based Models

- Development of field information collection technology
- Significant reduction in computation time
- Emergence of various numerical analysis modeling techni ques
- Evolution of data sharing methods
- Increased practicality

Development of Landslide Early Warning Systems

- Comprehensive analysis of results from statistical and phy sical-based models with rainfall forecast data
- Use of web-based early warning systems


3. Landslide Information System

Landslide Information System of the Korea Forest Service

- Classification of the entire country based on rainfall distribution and geological characteri stics
- Providing predictive information by analyzing rainfall data from the Meteorological Admini stration
- Reflecting real-time rainfall conditions on static landslide risk maps to provide real-time la ndslide risk by administrative district

Limitations

 Realistic constraints in reflecting detailed soil characteristics (permeability, groundwater l evel, etc.) by region make landslide prediction challenging

[Source: Korea Forest Service, Landslide Information System]


3. Landslide Information System

Landslide prediction information

올해 붕괴한 급경사지 4곳 중 1곳, 정부 평가에선 '안전'

(One out of four steep slopes collapsed this year, 'Safe' in government evaluation)

- 2020. 10. 6 Yonhap News article
- A total of 208 steep slopes collapsed due to record-breaking heavy rain in 2020.
- Of these, 53, or 25.4%, are graded A and B with no disaster risk.
- Due to the increasing frequency and amount of heavy rainfall caused by climate change, there is a need to supplement and improve the 'disaster risk assessment standards' of the Ministry of Public Administration and Security.

3. Landslide Information System

Landslide Information System(Landslide prediction information)

Landslide information system of the Korea Forest Service

Real-time landslide risk map of Japan.

Landslide early warning system of Italy

4. Future of Landslide Response Technology

Development direction of landslide response technology

Advancement in collected information

- Diversification of basic information
- Securing high-quality basic data for analysis

Real-time reflection of variables

- Inclusion of risk variables like rainfall forecast information
- Real-time Monitoring and Rapid Response

Improvement of accuracy in information analysis

- Enhancement of prediction algorithms
- Integration of advantages from physical and statistical models

Utilization of AI Technology

Machine Learning

- Predictive modeling using past landslide data
- Identification of collapse patterns and risk factors

Remote Sensing and Data Analysis

- Use of images (satellite, drones, etc.) for data collection
- Analysis of terrain changes, vegetation cover, etc.

Internet of Things (IoT)

- Development and use of sensors for real-time monitoring
- Development of comprehensive analysis techniques
- Integration and analysis of data from various sources

Operation of integrated system including generation of high-resolution risk maps, real-time analysis, forecast and warning system, and damage recovery analysis

Thank you for your attention

Korea's Response to Urban Flooding in Response to the Climate Crisis

On going Researches in Korea : Example

Development of Artificial Intelligence-Based Urban Inundation Prediction Model

• Example of Integrated Management System

Integrated Urban Inundation Management System

Indundation modeling

Gauge data

Optimal Operation

단일 목적(치수)보다는 다목적 시설(지하 고속도로 등) 병행 필요

Korea's Response to Urban Flooding in Response to the Climate Crisis

Closing Remark

Suggestion 1

Unstructured Measures Using New Technologies

- Al based Urban Flood Response System
- Expansion of monitoring system using new technology

Suggestion 2

Construction of large-scale facilities as a structural measure

- Construction of a Large–Diameter Rainwater Retention Tunnel
- Development of optimal operating rules for facilities

Suggestion 3

Improvement of disaster prevention capabilities by raising facility standards

- · Increasing the Central Government Management Rivers
- · Increase design frequency of water facilities
- River Maintenance Rate Upward Management

Suggestion 4

Cooperation of the political community

- · Revision of laws and regulations related to climate change response
- Expansion of additional facility investment
- Establishment of a control tower agency to respond to the climate crisis

Department of Economic and Social Affairs

Ministry of the Interior and Safety

THANK YOU

Changsam Jeong (jeongchangsam@gmail.com)